Faster Pairings on Special Weierstrass Curves

نویسندگان

  • Craig Costello
  • Hüseyin Hisil
  • Colin Boyd
  • Juan Manuel González Nieto
  • Kenneth Koon-Ho Wong
چکیده

This paper presents efficient formulas for computing cryptographic pairings on the curve y = cx + 1 over fields of large characteristic. We provide examples of pairing-friendly elliptic curves of this form which are of interest for efficient pairing implementations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Pairing Computation

This paper proposes new explicit formulas for the doubling and addition step in Miller’s algorithm to compute pairings. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the functions and th...

متن کامل

Faster Computation of Tate Pairings

This paper proposes new explicit formulas for the doubling and addition step in Miller’s algorithm to compute the Tate pairing. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the function...

متن کامل

Refinements of Miller's Algorithm over Weierstrass Curves Revisited

In 1986 Victor Miller described an algorithm for computing the Weil pairing in his unpublished manuscript. This algorithm has then become the core of all pairing-based cryptosystems. Many improvements of the algorithm have been presented. Most of them involve a choice of elliptic curves of a special forms to exploit a possible twist during Tate pairing computation. Other improvements involve a ...

متن کامل

Efficient computation of pairings on Jacobi quartic elliptic curves

This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y 2 D dX C Z. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best res...

متن کامل

Efficient Pairings Computation on Jacobi Quartic Elliptic Curves

This paper proposes the computation of the Tate pairing, Ate pairing and its variations on the special Jacobi quartic elliptic curve Y 2 = dX +Z. We improve the doubling and addition steps in Miller’s algorithm to compute the Tate pairing. We use the birational equivalence between Jacobi quartic curves and Weierstrass curves, together with a specific point representation to obtain the best resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009